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*Van Der Wads Attraction Between 
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Battelk-Znstitut e.V., Frankfurt/Main, G e m n y  

(Received August 29, 1969) 

ABSTRACT 
A general dispersion formula is derived, which represents the 

dispersion energy between two bodies A and B by their macroscopic 
screened fluctuation fields. These fluctuation fields are calculated ex- 
actly in the case of half-spaces and spheres. In the case of half-spaces 
the Lifshitz dispersion formula is obtained. The dispersion energy be- 
tween spheres is found to vary as l / d  for separations d small com- 
pared with the radii and to be proportional to l / d 6  for separations d 
large compared with the radii. The effect of layers adsorbed on the 
surfaces of the spheres on the dispersion energy is calculated. The 
dielectric properties of the adsorbed layers predominate over those 
of the bulk material for separations d smaller than the layer thickness. 

INTRODUCTION 

1 NTHIS PAPER we discuss three major subjects: 
The first is to conceive a general dispersion formula between macroscopic 

bodies on the basis of a microscopic approach. The second is to apply this 
dispersion formula to half-spaces and spheres. The third is to investigate the 
effect of adsorbed layers on the surfaces of spheres on their dispersion energy. 

GENERAL DISPERSION FORMULA 

Let us first describe how the general dispersion formula is derived. We 
consider a macroscopic dielectric body A and assume the Drude model of 
dispersion, i.e. we represent each molecule in A by a number of harmonic 
dipole oscillators (Fig. 1). We obtain the electric field of dipole i in A at 
position j outside of A as follows: 

an electric charge at i produces the potential l/lri - rjl 
an electric dipole at i produces the potential Oi( 
an electric dipole at a produces the field 

- rjl) 

* Presented at Conference on Physics of Adhesion, Karlsruhe, Germany, July 14-17, 1969. 
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D. Langbein 

Figure 1. Screening of fluctuation fields. 

Now, if dipole i is embedded in a dielectric medium A, the field Tij  
of i at j will be screened by the remaining dipoles k, m, . . . of A. This screened 
field Tijses consists of the direct field Tij, the first-order polarization field 
TikakTkj of all remaining dipoles k in A, the second-order polarization field 
TikakTkmhTmj of all the remaining dipoles k, m in A, and so on. 

T i Y  = Tij + z TikakTkj + TikakTkm%nTmj + * * * ( 2 )  
krA k,mrA 

We are interested in the dispersion energy between two macroscopic 
bodies A and B .  Thus, we consider j to be the position of a dipole in B and 
calculate also the screened field of dipole j at position i outside of B 

Tjiscr = Tii + TjlalTli + 2 TjlalTlnanTni + . . . ( 3 )  
ItB 1,nrB 

We understand that screening is due to that body at which the field 
originates. 

If we calculate the dispersion energy between bodies A and B from the 
difference between the zero-point energy of the perturbed and that of the 
unperturbed dipole modes, we obtain [ 11 

AEAB z - - z aiTiyalTjgCr 41r irA j r B  

+ f 2 2 aiTljSCrajTjkSCra~Tk~*alTl~r + . . . } ( 4 )  
I.krA I J E B  

We interpret ( 4 )  as follows: 
Molecule i in A produces spontaneous field fluctuations Tijscr. The intensity 
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Van Der Waals Attraction Between Macroscopic Bodies 

of these fluctuations is given by the imaginary part a ( ) ( w )  of the polariz- 
ability of molecule i. The field Tijs'+ then polarizes molecule j in B according 
to the real part a j ' ( w )  of the polarizability of molecule j .  The induced field 
Tjisc+ lowers the energy of the initial fluctuation of molecule i. Moreover, 
molecule j polarizes the rest of molecules k in A according to TjkSCr ak'( w ) ,  

molecule k polarizes molecule 1, molecule 1 polarizes molecule i, and this 
lowers the energy of the initial fluctuation, too. 

The resulting equation seems non-symmetric with respect to the acting 
molecule i and the reacting molecules j ,  k, 1, . . . However, the symmetry 
between molecules i, j ,  k, 1, . . . can be restored by shifting the contour of 
integration to the imaginary frequency axis, which leaves us with the com- 
plexargumentsai(io),aj(iw), . . .  in (4). 

We emphasize that only the macroscopic screened fields T i F  enter the 
final expression for the dispersion energy. This enables us to calculate A E ~ ~  
from strictly macroscopic considerations. 

HALF-SPACES AND SPHERES 

The second subject of our program is the application of the macroscopic 
dispersion formula ( 4 )  to half-spaces and spheres. 

Let us begin with half-spaces. The direct potential of a point charge i out- 
side a half-space A at position j is l / / r i  - rjI. The resulting polarization 
potential of half-space A is - [ ( - c 3 ) / (  + c 3 ) ]  /Iri) - rj[ where ri) is the 
image point of i with respect to the surface of A and el, c3 are the dielectric 
constants of half-space and exterior, respectively. A second half-space B with 
dielectric constant c2, which faces A at distance d, in like manner yields the 
polarization potential - [ ( e2 - c 3 ) / (  c2 + c 3 )  ] /Ir(l - rjI. Thus, the first term 
in the general dispersion formula ( 4 )  contains the factor 

€1 - €3 €2 - €3 -- 
€1 + €3 €2 + €3 

The second term in ( 4 )  contains the square of factor ( 5 ) ,  and so on. 
Since each reflection of the image charges at the surface of the opposite half- 
space increases their distance by twice the separation (I, we wind up with 

" 

(6)  

( '  ) - e 3 ( i w )  r 2 ( i w )  -c3(iw) s-'," d w  2 $ ( cl(io) " zw + t3(iw) c 2 ( i w )  + e3(iw) 1 z - - -- -- A E A B  

u = l  surface area 16 r2d2 

This is the exact Lifshitz formula for the case of small separations without 
retardation [2]. 

Let us now turn to the dispersion energy between two spheres A and B 
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D. Langbein 

Figure 2. Attracting spheres. 

Figure 3. Polarization potential. 

with radii Rl, Rz and dielectric constants el, Q, and let the separation of the 
c e n t e r s b e z = d + R l + R z  (Fig.2). 

We describe the polarization field of half-spaces in terms of image 
charges. The polarization field of spheres is conveniently expanded in terms 
of spherical harmonics. We illustrate this by the polarization potential Vpol of 
a point charge at ri outside a sphere with radius R and dielectric constant e 

( Fig. 3))  which reads 

We note that each polarization of the field by a sphere requires an expan- 
sion in terms of spherical harmonics and that the contribution of @-order 
spherical harmonics is proportional to the characteristic dielectric quotient 
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Van Der Waals Attraction Between Macroscopic Bodies 

qi(n) = n ( e i - c 3 )  ; i =  1 , s  (8 )  
%+ ( n +  1 )  €3 

Thus, the first order term of the dispersion energy between spheres A and 
B results to be [3] 

Convergence of (9)  is guaranteed by the fact that the reduced radii Ri/z 
and the dielectric quotients Ti( n )  are generally smaller than one. We find an 
upper and a lower limit for ALEAB, if we approximate qi(  n )  according to 

( 1 0 )  
2n e i - ~  n ( t i - C 3 )  , €4 - €3 --- - 

2 n + 1  z i + c 3  n ~ ~ + ( n + l ) c ~  c i + c 3  

Proportionality of the two limits to ( ti - t 3 ) / (  ti + c 3 )  implies that the 
corresponding limits for AEAB also split up into a frequency and a geometric 
factor. We obtain the upper limit 

and the lower limit 

where 

(13) 
- - q(iw) - c 3 ( i w )  t z ( i w )  - c 3 ( i w )  

q ( i w )  + r 3 ( i w )  c g ( i w )  + c 3 ( i w )  
w=i d w  - 

The lower limit (12) is essentially the result obtained by Hamaker with- 
out considering the screening of the fluctuation field. We find the Hamaker- 
interaction constant to equal &~/2,, as Krupp [4] concluded from analogies 
among the attraction between two half-spaces and between sphere and half- 
space. 

While the lower limit (12)  is obtained without any screening, the upper 
limit (11) corresponds to maximum screening by half-spaces. This is best 
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hE 

10 

10 

10 

I 

10 
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demonstrated by the example of the 
polarization potential ( 7 ) .  If we intro- 
duce the upper limit (10) we obtain 

c - € 3  R 1 
c + c3 ri Ir,) - rjl 

VPOl I - - - (14) 

where r,) is the image point of ri with 
respect to the sphere. We again ob- 
tain the principle of image charges 
and the dielectric quotient ( c - c 3 ) /  

( c  + c3) characteristic of half-spaces. 
The additional factor R/r ,  = ( R  - r ( ) /  
(ri - R )  offsets the generally smaller 
distance between ri and r: in the case 
of spheres (Fig. 3) .  

Fieure 4. Dispersion energy versus separation. 

Fig. 4 shows the dispersion energy AEAn together with its upper and 
lower limits AE, and AE,. We assumed R1 = R, and c,(i,,) = c Z ( i w )  = 2 for 
w smaller than an appropriate cut-off frequency The unit of the separation 
is the reduced unit d/Rz .  The unit for the dispersion energy h E A B  is arbitrary 
and, in this numerical example, depends primarily on the extension of the 
a-region, where el = t2 = 2 is assumed. Fig. 4 shows very close agreement 
of the dispersion energy and its upper and lower limits for small separations 
d, so that the modified Lifshitz formula C31 

can be used. This region of separations is characteristic of adhesion measure- 
ments involving adhesion of spheres with a diameter of a few cm at 
separations of a few cm from a half-space. In Fig. 4 the values of the 
exact dispersion energy have been computed by summing the first 120 terms 
in m and n in (9)  exactly and approximating the remaining terms according 
to (10). 

With regard to the dependence of hEAR on the dielectric constants cl, €3 

we note that the lower limit (10) is exact for ci close to one, whereas for E L  

close to infinity the upper limit (10) yields the correct result. The same is 
also true of the dispersion energy hEAR, i.e. with zi approaching one it ap- 
proaches the lowcr limit AE, and with ci approaching infinity it approaches 
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Van Der Waals Attraction Between Macroscopic Bodies 

Figure 5. Spheres covered with adsorbates. 

the upper limit AE,. By keeping first order correction terms to (10) we 
obtain the relation 

which turns out to be a sufficient approximation for all practical purposes. 

ADSORBED LAYERS 

Our third subject is the effect of layers adsorbed on the surface of 
spheres on their dispersion energy ( Fig. 5 ) . 

A first hint on this influence is obtained by comparing the Lifshitz formula 
(6)  for half-spaces with our result for spheres: The dispersion energy between 
a half-space and a sphere of radius R equals that between a half-space and a 
cylinder of surface area %dR, if we ignore the different effectiveness of 
screening in these two cases. 2 ~ d R  is the area of the section of the sphere 
at twice its distance d from the half-space, which is the position of the first 
layer of image charges in the system half-space plus cylinder. 

This coincidence suggests that the dispersion energy between a half-space 
and an inhomogeneous sphere is determined primarily by the composition of 
the sphere in its cross-section at distance 2d from the half-space. The disper- 
sion energy between a half-space and a sphere of dielectric constant C, which 
is covered with an adsorbed layer of dielectric constant c', should be deter- 
mined by €' for separations d smaller than the layer thickness and by e for 
separations d larger than the layer thickness. 
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D.  Langbein 

This suggestion is confirmed by quantitative investigations on the effect 
of adsorbed layers. If we calculate the polarization potential of a point charge 
at position rl outside a sphere of radius R and dielectric constants c for 
r < R’ and C‘ for R < r < R, we obtain (7) ,  with T( n )  replaced by [Sl 

The substitution of qpd( n) for qi( n )  again is the only change of the dis- 
persion energy formula between spheres in the presence of adsorbed layers 
(Fig. 5 ) .  If the thickness I& - R /  of such an adsorbed layer is small compared 
with the corresponding radius Ri, we find ~ ? ~ ( n )  to yield an exponential 
transition from n(q - c3)/[mi + (n + 1) c3] for small values of n to 
n(c: - c3)/  [a( + ( n  + 1) c3] for large values of n. It is a question of the 
number of terms in m, n needed for convergence of (9)  , whether the bulk 
material or the adsorbed layer make the main contribution to the dispersion 
energy. Since this number of terms is roughly given by the ratio of the 
radius Ri to the separation d, we find the dispersion energy to be determined 
by the adsorbed layer if (R(/Ri)Ri/d < 1, and by the bulk material if 

The effect of an adsorbed layer dominates over that of the bulk material 

N 

( R[/Ri)Ri’d < < 1. 

m 0.999 

l o G  l o 3  IdZ Id’ I 10 

Figure 6. Effect of adsorbed layers. 

for separations d smaller than the 
layer thickness, whereas for separa- 
tions d larger than the layer thickness 
the bulk material is predominant. 

Fig. 6 shows the effect of a layer of 
varying thickness R1 - R1’ adsorbed 
on the surface of sphere A. We plotted 
the dispersion energy AllAB(  ad) of a 
sphere covered with an adsorbate rel- 
ative to that of a sphere having a clean 
surface and identical radius versus the 
separation d. The parameter of the dif- 
ferent curves is the ratio between the 
inner radius R1’ and the outer radius 
R1. The dielectric constant r l ’ ( i o )  of 
the adsorbed layer is assumed larger 
than that of the bulk material, c<( io )  
= 10, e l ( & )  = 2. From Fig. 6 it is 
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Van Der W& Attraction Between Macroscopic Bodies 

obvious that it is the adsorbed layer which is effective if the separation d is 
smaller than the layer thickness. In this region we can expand ~ : ~ ( n )  in a 
power series in R(/RI. We obtain approximately 

where 

The first term in (18) is the dispersion energy between spheres with radii 
R1, R2 and dielectric constants el’( iw), e 2 ( i w ) .  It yields the limit of A E A B ( a d )  
on the left-hand side of Fig. 6. 

The second term in (18) is the dispersion energy between spheres with 
radii R1’, R2 and dielectric constants c l ( i w ) ,  ~ ( i w ) ,  if sphere A is embedded 
in a medium with dielectric constant cI’( L) and sphere B is embedded in a 
medium with dielectric constant c3(iw). The adsorbed layer does not only 
act as a spacer, but causes an additional screening of the reaction fields. 
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